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A nonlinear stage of the two-dimensional Rayleigh-Taylor instability for two 
magnetic fluids of finite thickness is studied by including the effect of surface 
tension between the two fluids. The system is subjected to a tangential magnetic 
field. The method of multiple scale perturbations is used in order to obtain 
uniformly valid expansions near the cutoff wavenumber separating stable and 
unstable deformations. Two nonlinear Schr6dinger equations are obtained, one 
of which leads to the determination of the cutoff wavenumber. The other 
Schr6dinger equation is used to analyze the stability of the system. It is found 
that if a finite-amplitude disturbance is stable, then a small modulation to the 
wave is also stable. It is also found that the tangential magnetic field plays a 
dual role in the stability criterion. Finally, the magnetic permeability constants 
of the fluid affect the stability conditions. 

1. I N T R O D U C T I O N  

The R a y l e i g h - T a y l o r  ins tab i l i ty  has  been  an  i m p o r t a n t  sub jec t  o f  
research  b e c a u s e  o f  its imp l i ca t ions  in s te l la r  and  p l a n e t a r y  inter iors .  

The  p r o b l e m  o f  R a y l e i g h - T a y l o r  ins tab i l i ty  dea l s  with a heavy  fluid 
s u p p o r t e d  by  a l ight  f luid ( C h a n d r a s e k h a r ,  1961). As gravi ty  des tab i l izes  
the  in ter face ,  this  conf igura t ion  is uns tab le .  But i f  sur face  t ens ion  exists 
be tween  the two fluids,  it has  a s tab i l iz ing  effect on the  conf igura t ion .  On  
the o the r  h a n d ,  Ze lazo  and  M e l c h e r  (1969) p o i n t e d  ou t  tha t  a m a g n e t i c  
f ield a p p l i e d  t angen t i a l ly  to the  in te r face  be tween  two k inds  o f  fer rof lu ids  
exer ts  a s tab i l i z ing  inf luence  on the conf igura t ion .  I t  is in teres t ing  tha t  the  
m a g n e t i c  field is u sed  to s tab i l ize  the  in te r face  o f  the  f luids and  to s u p p o r t  
the  heavy  fluid.  The  s tabi l i ty  o f  a magne t i c  fluid co lumn  was expe r imen ta l l y  
d e m o n s t r a t e d  by  Ze lazo  and  M e l c h e r  (1969). 
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Many theoretical and numerical studies have been done to understand 
the nonlinear stage of the Rayleigh-Taylor instability (e.g., Mohamed and 
E1 Shehawey, 1983; Huba et al., 1987; Oron and Rosenau, 1989; Malik and 
Singh, 1989; Saasen and Tyvand, 1990; Hassam and Huba, 1990; and Iizuka 
and Wadati, 1990). It is, however, very difficult to deal with the motion of 
the interface without simplifications. There seem to be no conclusive com- 
pact equations for the interface dynamics. Especially when the deformation 
in the vertical direction gets large, the motion of a bubble occurs. Thus, we 
encounter a difficulty that the interface as a function of the horizontal 
coordinates will be multivalued. Some numerical calculations of bubble 
formation have been reported (Huba et al., 1987; Malik and Singh, 1989). 

Malik and Singh (1989) studied the motion of an inviscid, incompress- 
ible, nonconducting ferrofluid with a magnetic field and the surface tension 
under gravity, and demonstrated the formation of bubbles by means of 
Lagrangian transformations. They showed as well how the magnetic field 
and the surface tension stabilize the interface to conserve the contours. The 
formation of bubbles can be inhibited by using a magnetic fluid with a 
higher permeability and (or) by increasing the strength of the applied 
magnetic field. In their analysis, they obtained the KdV equation, but its 
validity seems to be doubtful. 

Recently Iizuka and Wadati (1990) studied the two-dimensional non- 
linear Rayleigh-Taylor instability with the effect of surface tension between 
the two fluids, but in the absence of a magnetic field. In their analysis, the 
stabilizing effect comes only from the surface tension between the two fluids. 
They obtained three types of nonlinear evolution equations for the interface 
by means of the reductive perturbation method. Each equation is valid 
within a certain region of the wavenumber k introduced in the linearized 
theory. When k is sufficiently large and thus in the stable region, they 
obtained the nonlinear Schr6dinger equation. When k is nearly equal to 
the critical wavenumber kc, they obtained the unstable nonlinear Schr6din- 
ger equation. Finally, they obtained the nonlinear diffusion equation in the 
unstable region, where k is smaller than kc. 

In this paper, a nonlinear stage of the Rayleigh-Taylor instability in 
magnetic fluids is discussed from the viewpoint of the nonlinear wave theory. 
We present a nonlinear evolution equation for the interface in the presence 
of a uniform tangential magnetic field. 

In Section 2, we formulated the problem and outline the procedure 
for deriving linear as well as a hierarchy of nonlinear partial differential 
equations of various orders with the use of the method of multiple scales. 
The equation governing the evolution of the amplitude is derived in the 
same section. In Section 3, we derive two nonlinear Schr6dinger equations 
valid for a progressive wave train and stationary waves. The nonlinear cutoff 
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wavenumber which separates the regions of instability from those of stability 
is arrived at in Section 4. The stability conditions of the system are deter- 
mined in Section 5. 

2. STATEMENT OF THE PROBLEM 

Consider two inviscid, incompressible, superposed magnetic fluids of 
densities p~, P2, magnetic permeabilities /~1, /~2, and thicknesses hi, h2, 
respectively. Surface tension exists between the two fluids. The two fluids 
are influenced by a constant magnetic field Ho in the x direction. The 
magnetic fluid is assumed to be initially quiescent with linear magnetization 
properties. 

We assume that the system is two-dimensional. In coordinates (x, y), 
a periodic wave of wavelength A propagates in the x direction and gravity 
g acts in the negative y direction. The x axis is the mean level of the wave, 
and the flow is bounded by horizontal planes at y = -h~ and y = h2. The 
interface between the two fluids is described as y = r/(x, t), where t is the 
time. When it is completely fiat, 7/= 0. 

We shall investigate the propagation of weakly nonlinear waves, 
confining ourselves to a wave train that has a principal direction along the 
x axis, although modulations in the x direction will be allowed. As the 
motion of the system starts from rest, it is taken to be an irrotational flow. 
The basic equations governing the irrotational motion are 

V2(/~I=0 for -h~<y<'q(x, t) (2.1) 

V2~2 = 0 for ~7(x,t)<y<h2 (2.2) 

where 4~(x,y, t) is the velocity potential (v=V~b) and y = ~7(x, t) is the 
elevation of the free surface. 

We also assume that the quasistatic approximation is valid and we 
introduce the magnetic scalar potential ~O(x, y, t) such that 

Hj = Hoe~- Vr  j = l , 2  

where ex is the unit vector along the x direction. 
Therefore the differential equations satisfied by ~0j are the Laplace 

equations 

V2~b~=0 for -h~<y<~(x , t )  (2.3) 

V2qJ2=0 for rl(x, t)<y<h2 (2.4) 

The subscripts 1 and 2 refer to quantities in the lower fluid and upper 
fluid, respectively. 

The solutions for ~bj and ~0j (j  = 1, 2) have to satisfy the following 
boundary conditions. 
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2.1. Boundary Conditions 

(a) On the rigid boundaries 

0011 = 0  0021 =0,  
Oy y=-hl  Oy y=h2 

(b) At the interface y = ~7(x, t): 
(i) The kinematic condition is 

001 Ii = o, 0~2 = 0 (2.5) 
OX ] y=_hl OX y=h2 

aOj an aOj a__n_n 
O---y- Ot = Ox Ox' j = 1, 2 (2.6) 

(ii) The tangential component  of  the magnetic field should be con- 
tinuous at the interface, 

Ox a~ 

where {1" I} represents the jump across the interface. 
(iii) Since there are no free currents at the surface y = rl(x, t), the 

normal component  of  the magnetic induction is continuous at the interface, 

O0 } + Ho(iZ2_ ,On On f O0 

(iv) The continuity of  normal stresses across y = 7/(x, t) requires 

x , 0 0 1  002 . 1 ~ . -2 
(Pl - P2)grl * Pl ~ - P2 -~f -*~ tPl(V01) - P2( v 02) 2] 

- O'ox 202"0 [1 + \~x/(0rf~2]-s/2 = . J  21- {1"( HEn-- H2)I} (2.9) 

where o- is the coefficient of  surface tension and H,  and H, represent the 
normal and tangential components of  the magnetic field, respectively. 

2.2. Method of Solution and Analysis 

The set of  equations (2.1)-(2.9) will be solved using the method of 
multiple scales (Nayfeh, 1976). We expand all the physical quantities in 
powers of a small parameter e characterizing the steepness ratio of  the 
wave. The independent variables x, t are scaled in a similar way, 

Xn = enx, Tn = ent, n = 0, 1, 2 (2.10) 
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and the variables may 

~7(x; t )=  

~b~(x; y; t) = Z 
n = l  

be expanded as 

3 

Y, e"rh,(Xo, X1,X2;  To, 1"1, T2)+O(E 4) (2.11) 
,"1 = 1 

3 

e"4~j.(Xo, X1 ,X2;  y; 7"0, T~, T2)+O(e 4) (2.12) 

3 

~bj(x; y; t) = Z 
n = l  

e"d/j,(Xo, X1 ,X2;  y; To, T1, T2)+O(e 4) (2.13) 

where r/1 is expressed in the form 

~7, = A(  X1, X2; T1, T2) exp[ i( k X o -  tO To) ] 

+ A~(X~, X2; 7"1, T2) exp[- i (kXo- toTo)]  (2.14) 

Here k = 2r is the wavenumber, to is the frequency of the disturb- 
ance, and A is an unknown slowly varying function of the amplitude of 
the propagating wave and will be determined later by the solvability condi- 
tions; the bar denotes the complex conjugate. 

The boundary conditions (2.6)-(2.9) are prescribed at the perturbed 
surface y = 7/(x, t). We expand the physical quantities involved in Maclaurin 
series about y = 0. On substituting (2.10)-(2.13) into (2.1)-(2.9) and equating 
the coefficients of equal powers in e, we obtain the linear as well as successive 
higher-order equations, each of which can be solved with the knowledge 
of the solutions of the previous orders. The procedure is straightforward 
but lengthy and will not be included here. The details are available from 
the author and is outlined by Nayfeh (1976). 

2.3. Derivation of the Amplitude Equation 

The solution of the first-order or linear problem leads to the dispersion 
relation derived by Rosensweig (1985), 

D(to, k) = g(p~ - P2) + H~6(k)k  + crk 2 
2 

tO 
k (pl coth kh~+p2 coth kh2) =0 (2.15) 

where 

with 

8(k) = (/zj - p,2)2//2o(k) 

/~o(k) --/z~ coth khl + I,I,2 coth kh2 

From the above dispersion relation, we observe that the magnetic field 
has a stabilizing influence on the wave motion. This theoretical result was 
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and its complex 
becomes 

first obtained and confirmed experimentally by Zelazo and Melcher (1969). 
Since our aim is to study amplitude modulation of the progressive waves, 
we assume o)2> 0 and proceed to the higher-order problems. For the 
second-order problem, we have the condition 

OD OA OD OA 
F 0 (2.16) 

Ow d T~ ok OX~ 

conjugate relation. If  OD/Oto #0 ,  the above condition 

where 

OA OA 
- - +  0 (2.17) 

vg = dto/dk = ( o ) 2 [ p l h l  cosech 2 khl q- p2h2 cosech 2 kh 2 

+ (p~ coth khl + P2 coth kha)/k] 
+ H26(k)k[1 + k(/~lhl cosech 2 kh~ 

+/z2h2 cosech z kh2)/l~o(k)] + 2trk 2} 

x [2to(p1 coth kh~ + P2 coth kh2)] -1 

is the group velocity of linearized wave theory. It follows as usual that the 
amplitude A depends on the variables X1, TI through the combination 
( x ,  - v~L) .  

If  we carry the problem to the third-order set of equations, we can 
substitute the solutions of the first- and second-order problems into that of 
the third order and solve the resulting equations. The solutions yield the 
solvability condition 

( ODOA OD O~X2) 
i o,, ,   -ff 

1 {02D O2A OZD O2A 02D oEA'~ 
+-s OT i 2 - - - - ~  =jA2.~ (2.18) 

00) ok OX 10T  1 cgk ~ OX2] 

where 

J = 2kt~ 2 [ Pl c~ khl ( 1 sin~khl) + pz coth kh2( 1 sin~2kh2)] 

- 23o(k)HEk 3 - 1.5trk 4 
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with 

23(k)3(2k) 62(k) 
6o(k)=23(k) (p,,-p,2) 2 } (/Zl-/.L2)fi(2k) 

--/'g2 c o t h  kh2 coth 2kh2) 

pqp,23(2k) 
/2o2(k) 

(coth khl + coth kh2) 

(jls 1 coth kh~ coth 2kh~ 

x [coth 2khl + coth 2kh2 - 2 coth 2khl coth 2kh2 

x (coth khl + coth kh2)] 

62(k) 26(k)6(2k) 
81(k ) ----- 2(~1 - ~2) + 

2(/~2- a l )  ~2-/-'1 

+ ~  (/z2 coth 2 kh2-lzl coth 2 khl) 
Z#Zottr 

(coth khl + coth kh2) 21z1#x275(k) 
+ (/z2 -/z,)/Zo(2k) 

x (coth 2khl + coth 2kh2) 

We notice that the asymptotic expansions break down when the 
denominator of J equals zero, which corresponds to second-harmonic 
resonance. We therefore assume that D(2w, 2 k ) #  0. 

3. NONLINEAR SCHRODINGER EQUATIONS 

The solvability conditions (2.16) and (2.18) can be simplified and 
combined to produce a single equation. This can be done through some 
manipulation using the original variables x and t. Finally, we get 

(OA+dkOA) l d2kO2A (e2j /~k)A2~i  (3.1) 
i \ox do~ -~ 2 d t o  2 cot 2 - 

where dk/dw is the inverse of the group velocity. 
If  we use the Gardner-Morikawa transformation 

rl= e2x, r= e t - - ~  x (3.2) 
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then equation (3.1) takes the form 

OA 02A 
i - - +  Po - - -  Qo A2,~ 

O ~ 0"1-2 - -  

where 

Elhefnawy 

(3.3) 

where 

. OA 02A 
, "~  + P - ~  = Q A 2,,~ (3.6) 

p = _ _ _  1 dvg j / O D  
2 dk' Q = -  /o-w~ 

We observe that the solution of equation (3.6) is not valid at to = 0 and 
thus cannot be used to obtain the cutoff wavenumber. However, one can 
study the stability of wave trains for perturbations having values of k not 
very close to the cutoff wavenumber. It is known that the solutions of 
equation (3.6) are bounded if PQ > 0. Thus, if the condition PQ > 0 is 
satisfied, the finite deformation of the interface is stable and finite-amplitude 
waves can propagate through the interface. 

We note that if we are interested in equation (3.6) only, then the analysis 
can be considerably simplified by excluding the time scale T~. Using only 

then equation 
equation 

1 dEk j / O D  
P ~  dto -'-5 and Qo = / - ~ -  

Equation (3.3) is a nonlinear SchrSdinger equation. Its solution is valid 
near to = 0 and therefore can be used to obtain the cutoff wavenumber. 

As suggested by Davey (1972) and Nayfeh (1976), we can obtain an 
equation analogous to (3.1) which contains a second-order space derivative 
by inserting dto/dk instead of dk/dto into (2.18). With a similar procedure 
we get 

I-~7, -S~. dto OA) _~ 21dEto o2A ( - e 2 j /  ~ )  A2"~ (3.4) 
ixo~+,,~o~ dk 2 Ox 2 

which is the analogous equation to (3.1). Equation (3.4) includes the first- 
and second-order spatial derivatives but involves a first-order time derivative 
only. 

Changing the independent variables from x and t into 

X = e(x - vgt), T = e2t (3.5) 

(3.4) tends to become a second nonlinear SchrSdinger 
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the time scale T2 and using a coordinate system that translates the group 
velocity, one can easily obtain equation (3.6). 

In order to find the surface deflection, we examine the t ime-dependent 
solution of  equation (3.1), which can be expressed as 

A = �89 exp( i s t  + const) (3.7) 

where a is a constant and 

s_~_{~_[(dk~ dtO ] 2 2  d2k]l/21/d2k j / ~ 2  +0.5~ a O o ~ 2 j  (3.8) 

Expanding (3.8) for small e, we get 

s = - e 2 a 2 Q o / ( 4 d k / & o )  

= - e 2 a 2 k j / [ 8 t o ( p l  coth khl +p2 coth kh2)] (3.9) 

Substituting for J into s, one obtains A and hence 7/. The result is 

rl(x, t) = ea cos 0 +0.5e2a2A cos 20 + O(e ~) (3.10) 

where 

0 -- k x - ( , o  - s ) t  

A = {to2[p2(coth 2 kh2 + 0.5 cosech 2 kh2) 

- p l ( c o t h  2 khl + 0.5 cosech 2 khl)  ] 

- 8 1 ( k ) H 2 k 2 } / D ( 2 w ,  2k) 

Equation (3.10) shows the surface elevation of  the interface. The 
solution breaks up when D(2to, 2k) = 0 (A ~ oo) since the second-order term 
becomes larger than the first-order term. When D(2to, 2k) = 0, we see that 

g(Pl - -  Pa)[(Pl coth khl + P2 coth kh2) 

-2 (p l  coth 2kh~ + P2 coth 2kh2)] 

+ 2 k H ~ [ 8 ( 2 k ) ( p l  coth kh~ + p2 coth kh2) 

- 8 ( k ) (p l  coth 2khl  +P2 coth 2kh2)] 

+ 2trkE[2(pl coth khl + P2 coth kh2) 

- (p~ coth 2khl  + P2 coth 2kh2)] = 0 (3.11) 

which is the second-harmonic resonance. It is clear that the magnetic field 
has an effect on the resonance wavenumber. If  h~ ~oo and h2~ oo (this is 
the case of  two semi-infinite fluid layers), equation (3.11) becomes 

k 2 = g(Pl  - p2)/(2tr) (3.12) 

which is the same as obtained by Elhefnawy (1990). 
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4. NONLINEAR CUTOFF WAVENUMBER 

Equation (3.6) cannot be applied near the cutoff wavenumber, since, 
as w ~ 0, we find vg --> ~ .  Thus, we may use only the set of  relations leading 
to equation (3.3). In the limit as oJ--> 0 we find 

Po = - ( P l  coth k~hl + P2 coth kch2){2crk 2 + kcH2~(k~) 

x [1 + k~(Iz~hl cosech 2 kchl +/d,2h2 cosech 2 kch2)]} -1 (4.1) 

and 

where the 
equation 

Qo = - k3[1.5crkr + 28o(k~)H~]{2o'kc + H~8(k~) 

X [1 + k~(/Zlhl cosech 2 kchl+p~2h2cosech 2 k~h2)]} -1 (4.2) 

linear cutoff wavenumber k~ is given by the transcendental 

g(P, - P2) + H~8(kc)kc + o'k~ = 0 (4.3) 

We now discuss the stability of  the wave train solution of constant 
amplitude. Writing 

A(7/, ~') = Ao exp[ i (b?  - O r ) ]  (4.4) 

and substituting in equation (3.3), we get 

122 = - [ ( k  + Oo[Aol2)/Po] (4.5) 

Since Po and Qo are nonpositive, we require k<-QolAo[  2 for f~ to 
become imaginary. The nonlinear cutoff wavenumber is therefore given by 

Kn = kc + e2lAol2k3[1.5o'k~ + 28o( kc)H~]{2o'k~ + H~8( k~) 

x [1 + k~(I.qhl cosech 2 kchl + tz2h2 cosech 2 kch2)]} -~ (4.6) 

The nonlinear correction to the wavenumber given on the right-hand 
side of  equation (4.6) can be either positive or negative, depending upon 
the signs of Po and Q0, thus resulting in stability or instability. Moreover, 
the bandwidth of  spectrum is O(e 2) in the wavenumber space for standing 
waves, and the magnetic field changes the range of  unstable wavenumbers. 

5. STABILITY CONDITIONS 

The analysis of this section will be based on equation (3.6). Equation 
(3.6) describes the modulation of a one-dimensional weakly nonlinear 
dispersive wave in the presence of  an externally applied magnetic field. It 
is well known that the solutions of  this equation are stable if and only if 

PQ>O (5.1) 
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where 

k 2 
p =  

8r cosh khl + P2 coth kh2): 

O) 
x {3[(pl coth khl + P2 coth kh2) 

+ k(plh 1 cosech 2 kh~ + pzh2 cosech 2 kh2)] 2-  4(pl coth khl 

+P2 coth kh2)[pl coth khl + P2 coth kh2 

+ k(o~hl cosech 2 khl 

+ p2h2 cosech 2 kh2) + kZ(plh~ cosech 2 khl coth khl 

+,02h~ cosech 2 kh2 coth kh2)]} 

2c~ ( 
+--s 2k(01 coth kh~ + o2 coth kh2) 

x 0"-~ /~o(k) tz~h~ cosech a khl+~2h2 cosech a kh2 

k 
+-7-77X,,_, (/xlh~ cosech 2 khl 

/ZoI, K) 

+ /~h2  cosech 2 kh2) 2-  k(I.~lh~ cosech 2 khl coth khl 

+tz2h~cosech2kh2cothkh2)]} 

+ [p~ coth kh~ +P2 coth kh2 

+ k(plhl cosech 2 khl + p2h2 cosech 2 kh2)] 

x , z ~ - ~  . ' [#o(k) 
L ~o(k) 

+ k(tz,h, cosech 2 khl +/z2h2 cosech 2 kh2)]}) 

f ,, . n~8( k ) 
- lzo'k + ~ - -~ -y -  [~o(k) 

"~- k(/-~lhl  COSeCh2 khl ~- ~,~2h2 cosech2  . )lY1 
1 3  

(5.2) 
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and 

with 
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k Q =  
2w(pl coth k h  1 "~-P2 coth kh2) 

• (2kto2[(pl coth kh~ + P2 coth kh2) 

-- (Pl cosech2 khl coth khl + P2 cosech2 kh2 coth kh2)] 

2 
- 26o(k)HEk 3 - 1.5o'k 4 

D(2to, 2k) 

x {81(k)HEk 2 + o)2[(01 coth 2 khl - p2 coth 2 kh2) 

+ 0.5(p~ cosech 2 k h l -  P: cosech2 kh2)]}2/ 
/ 

(5.3) 

k 
w 2 = [g(Pl - P2) + HE6(k) k + o'k2] (5.4) 

PI coth kh~ + P2 coth kh  2 

Thus, a finite-amplitude wave propagating through the surface is stable 
when the condition given by (5.1) is satisfied. This condition depends on 
Ho, k, g, o-, pl,2, ht,2, and /~,2- The critical values of these parameters 
required for stability may be obtained from the equality of condition (5.1), 
namely 

PQ = 0 (5.5) 

The last condition (5.5) is given by the vanishing of P and Q. The 
condition P = 0 can be written in the form 

while Q = 0 becomes 

plH4 + p2H2 + p3 = 0 (5.6) 

and 

P4HZo-P5 = 0 (5.9) 

P6n4 + P m ~ +  P8 - 0 (5.7) 
p4H2-p5 

where the p's are evaluated and the details are given in the Appendix. 
We also observe that the condition (5.7) splits into 

p6H~+p7H~+p8 = 0 (5.8) 
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From equations (5.6), (5.8), and (5.9) and inequality (5.1) we find that 
the system is stable provided that the magnetic field satisfies any of  the 
following sets of  conditions: 

plH4 + p2H2 + p3 > O, 

plHa+p2H2 + p3 > O, 

plH4+p2H~ +P3 < 0, 

4 2 
plHo + p2Ho + P3 < O, 

p6H4+pTH2+ps>O, and p4H20-ps>O (5.10) 

p6H~+vTHg+ps<O, a n d  p 4 H 2 o - p s < O  (5.11) 

p6H4+p7H2+ps<O, and p4H2-ps>O (5.12) 

p6H4+pTH2+ps>O , and p4H2o-Ps<O (5.13) 

For the limiting case as hi - oo and h 2 -~ 00, we find P = 0 gives 

B - m o = 0  

while Q = 0  gives 

where 

( B - m , ) (  B - m2) 
g(Pl - P2) - 2 o'k2 = 0 

(5.14) 

(5.15) 

B = (~2  - v~, YH~ol ( ~ :  + ~*,) 

mo = [g2(P, - P2) 2 - 6o'gk2(pl - P2) - 3 o . 2 k 4 ] / ( 4 o . k  3) 

F ( l '  l"' 0( 2 O~ 2 O L  3 

m l '  m 2 =  - 2 o q  + L \ 2 c q /  a l J  

oe 1 = 2k2(p * - / z* )  2 

oe 2 = 4kp *(p * - /**)[g(p,  - P2) + o.k2] 

ot 3 = o.2 k 4( 2p *2- 1) + o'gk2(p, - p2)(4p .2 - 7 / 2 )  

+2g2(pl _ p2)2(p,2 -ov 1 ) 

p* = (p, - p2)/(pl + p2) 

~* * = (~1 - t* : ) l  (**, + ~ )  

In this case, we find that the system is stable in any of the following 
c a s e s :  

(i) B < m o  and either B<rn~ or B > m : ,  provided that k2< 
g(Pl -- p2)/2o.. 

(ii) B < too, m l  < B < m 2 ,  and k 2 < g(Pl - p 2 ) / 2 c r .  

(iii) B < mo only if both ml and m2 are complex and k 2 > g(pl - 02)/2o'. 
(iv) B > mo, the sign of  the inequality involving k 2 and g(P~- 02)/2o 

being reversed in cases (i)-(iii). 
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6. C O N C L U D I N G  REMARKS 

We have shown that the evolution of the amplitude of the progressive 
as well as the standing waves in superposed magnetic fluids of finite thickness 
is governed by two nonlinear Schr6dinger equations, based on the use of 
the method of multiple scales. One of them contains only first derivatives 
in time, while the second contains first and second derivatives in time. 
The first equation is used to show that the stability of uniform wave 
trains depends on the wavelength, the surface tension, the gravity, the 
magnetic field, and the mgnetic permeabilities, densities, and thicknesses 
of the two fluids. The results show that the waves can be unstable against 
modulation, in the presence of the tangential magnetic field, if the product 
of the group velocity rate and the nonlinear interaction coefficient is 
negative. 

Although valid for a wide range of wavenumbers, the first Schr6dinger 
equation is invalid near the cutoff conditions separating stable from unstable 
motions. However, the second Schr6dinger equation, which contains first 
as well as second derivatives in time, is valid near the cutoff wavenumbers. 
This second equation is used to determine the dependence of the cutoff 
wavenumber on the disturbance amplitude. 

APPENDIX 

The values of the coefficients Pl, P2,- �9 �9 P8 appearing in equations (5.6) 
and (5.7) are 

Pl = SlS4t~2(k) 4/2o(k) - s4/k 2 s i s 2  + k(3s~-4sls3) 122(k) ~- 82(k) s, 

�9 +2 ~- -~2(k){s : lXo(k)+ks2s4+2kSl [~-s , ]  } 

2g(pl-P2)8(k) (sl[3S4+ s 2 p2 = kl2o( k ) 2 k ( ~ - s s )  

klio( k ) ---~l (3S22-4s,s3)]+s21312o(k)+ks4]} 

2orS(k) . 
+ ~--~-~ {2/z0(k)s, + k[SlS4+ 5~o(k)s2] 

-I- k2[s2saq" 251 ( ~ _ ~ _ $ 5 )  q _ S 2 4  •(k)s, (3s~-4s,s3)]} 
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where  

-+ 
k \ st / 

3s~-4s~s3 
+~r2k( 3st+6ksz+k~ ~ ") 

p, = 2 k [ s , ~ ( 2 k ) -  sg~(k)] 

P5 = g(I)~ - pe)(2s9 - s~) + 2~rk2(s9 - 2sa) 

/96 = P4$11 -- 2 ~ 3  

P7 ~ P4Xt~- PsStl --4St2St3 

Ps =- ~( psslo + 2s~2) 

sa = P l  co th  khl+p2 coth  kh2 

sz = p~h~ cosech  2 kh~ + p2h 2 c o s e c h  ~" kh: 

s3 = p~h~ cosect~ 2 kh~ co th  kht+ pzh~ cosech  z khz co th  kh2 

s4 = / ~  hi coseeh  2 kh~ + 1~2he cosech ~ kh2 

s5 = tx~h~ cosecla 2 kh~ coth  kht+ tx~h~ cosech  2 kh2 co th  kh2 

s6 = p~ cosech  z kh~ coth  kha +p2 cosech2 kh2 coth kh2 

s7 = 91 co tlaz kh~ - p~ co th  • kh~ 

Ss =/gt  cosech  2 kha - pe cosech :  kh2 

s9 --O~ coth  2khl +p2  co th  2kh2 

s~o = 2kZ(1 - s6/ sl)[g(pl - p2) + okZ] - 3  ~ 

s,, = 2k3[ 3( k )(1 - s6/ s,) - 3o(k)]  

st2 = k( sv + 0.5Ss)[ g(pl - P2) + ctk2]/ sl 

s,3 = ka[6o(k)(sT+O.5ss)/s~ + 6 t (k ) ]  
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